
Statins for heart failure: where to go from here?

Stephan von Haehling1,2, Stefan D. Anker1,2

A b s t r a c t

Statins, also known as 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors,
confer a number of actions beyond mere cholesterol reduction. These so-called
pleiotropic effects had been proposed to exert beneficial effects in patients with
chronic heart failure, because improvements in endothelial function, decreases in
inflammatory markers, and the release of endothelial progenitor cells had been
reported with statin use. The inhibition of the small monomeric GTPase Rho appears
to be involved in many statin-mediated beneficial cholesterol-independent effects.
The results of recent clinical studies with statins in patients with chronic heart
failure are somewhat mixed. Some of the published data can potentially be
explained by misconceptions about pleiotropic effects as such. This article discusses
statin-mediated pleiotropic effects, illustrates the example of the specific Rho kinase
inhibitor fasudil, and describes the available results from statin studies in chronic
heart failure.
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Introduction

Chronic heart failure (CHF) remains a major health public burden.
Indeed, heart failure accounts for approximately 970,000 hospitalizations
and 12-15 million outpatient office visits in the United States per year [1].
The associated health care costs have been estimated to amount to 28
billion US-dollar annually. Recent advances in both drug and device therapy
and their introduction into current heart failure treament guidelines have
contributed to improvements in the patients’ quality of life and prognosis.
However, this has led likewise to increases in both prevalence and
incidence of the disease. In fact, current estimates regarding the incidence
of CHF in most European countries and the United States range between
0.1-0.5% per year. The numbers are doubling with each age decade to reach
3% in those aged 75 or over. Similar estimates have been published
regarding the prevalence of CHF, which amounts to 0.3-2.4%. This implies
that 5 million people in the United States are affected [1].

The treatment of CHF has made significant advances over the last
decades. The introduction of new biomarkers from the blood, especially
natriuretic peptides like B-type natriuretic peptide (BNP), its precursor 
N-terminal proBNP (NT-proBNP) and, more recently, mid-regional pro-atrial
natriuretic peptide (MR-proANP) has helped in establishing the diagnosis
of CHF and in clinical decision making [2-4]. Our pathophysiological
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understanding of CHF has also made significant
progress. Only recently, co-morbidities such as
anemia [5-9] and cardiac cachexia [10-13] are
receiving more attention. Indeed, this syndrome is
much more than mere pump failure but rather 
a multisystem disorder that involves the
musculoskeletal, renal, neuroendocrine, and the
immune system. Despite the numerous advances
in the field of CHF, the clinical perspective of the
patients remains poor, and about half of them die
within four years of diagnosis [14]. The overall
prognosis has thus been compared with some
types of malignant cancer [15].

Neuroendocrine activation has been a major
focus of therapeutic endevours in recent years, and
the introduction of angiotensin converting enzyme-
inhibitors and beta-blockers into CHF treatment
regimens has yielded significant improvements in
the patients’ prognosis. However, a lot remains to
be done. Novel therapeutic avenues need to be
pursued to cover other pathophysiological aspects
of the disease. This is particularly true for the
immunological aspects of CHF but also for the
endothelial dysfunction commonly associated with
the disease. Cardiac cachexia, a terminal stage of
CHF that is associated with non-voluntary non-
edematous weight loss, can be viewed as the biggest
therapeutic challenge [10]. Indeed, no specific
treatment other than targeting the underlying illness
is currently available [16, 17].

Statins, also known as 3-hydroxy-3-methylglu-
taryl-coenzyme A (HMG-CoA) reductase inhibitors,
have been widely hailed as the aspirin of the new
millennium. Indeed, the advent of these drugs has
revolutionized the treatment of hypercholesterolemia,
and their usefulness is now generally accepted in
primary and secondary prevention of cardiovascular
disease. This action is apparently not only owed to
decreases in serum cholesterol but rather to effects
beyond mere cholesterol reduction, so-called
pleiotropic actions. It has been suggested by 
a number of independent researchers, that these
pleiotropic effects may confer beneficial effects in
patients with CHF [18]. The purpose of this article
is to highlight the current knowledge of statin
actions and to describe the available data from
studies addressing statin treatment in patients with
this disease.

Pathophysiological background

A number of pathophysiological mechanisms
have been linked to the development and the
progression of CHF. These mechanisms include left
ventricular remodelling, endothelial dysfunction,
insulin resistance, lean and fat tissue wasting, and
pro-inflammatory cytokine activation [19] – among
many others. The overactivity of pro-inflammatory
cytokines has been first described by Levine and

associates in 1990 when they assessed plasma
levels of tumor necrosis factor-α (TNF-α) in such
patients [20]. Since then, elevated levels of TNF-α,
its soluble receptors TNFR-1 and TNFR-2, and other
pro-inflammatory mediators like interleukin (IL) 1 and
6 have been implicated in an impaired long- and
short-term prognosis of patients with CHF [21, 22].
The origin of pro-inflammatory cytokine activation
remains a matter of speculation although a number
of different hypotheses have been suggested. These
have recently been discussed elsewhere [23]. 
Pro-inflammatory cytokine activation (like their
downstream intracellular targets [24]) in turn has
been implicated in the development of left ventricular
dysfunction, left ventricular remodelling, increased
cardiac myocyte apoptosis, the development of
anorexia and cachexia, reduced skeletal muscle
blood flow and endothelial dysfunction, severity of
insulin resistance, activation of the inducible isoform
of nitric oxide synthase, β-receptor uncoupling from
adenylate cyclase, and other effects [29].

Therefore, a number of different approaches have
been pursued to tackle this phenomenon in CHF.
Unfortunately, direct inhibition of TNF-α with specific
antibodies has largely failed in clinical studies. The
disappointing results of some large-scale trials in
this field have recently been described in detail
elsewhere [25, 26]. A call for broader approaches
that are not only directed at single players in the
cytokine cascade led to performing the ACCLAIM
(Advanced Chronic heart failure CLinical Assessment
of Immune Modulation therapy) study [27]. Indeed,
a small phase II study of this immune modulation
approach had produced promising results. To follow
this therapeutic avenue, it is necessary to expose
human blood drawn from patients with CHF ex vivo
to oxidative stress with subsequent re-injection into
the respective patient [28]. The procedure requires
10 mL of venous blood that are exposed to
ultraviolet light and ozone gas in a special blood
treatment unit. Intramuscular re-injection leads to
increased apoptosis. Apoptotic cells express
phophatidylserine on their cell surfaces, which is
recognised by specific receptors on macrophages
and dendritic cells. This leads to an enhanced
release of the anti-inflammatory substances IL-10
and TGF-β, which triggers the development of
regulatory T cells [26].

A small double-blind, placebo-controlled study
in 75 patients with moderate to severe CHF showed
that such therapy significantly reduced the risk of
death (p=0.022) and hospitalization (p=0.008) at 
6 months of follow-up [29]. Plasma levels of TNF-α,
IL-6, interferon-γ, IL-10, and C-reactive protein (CRP)
were unaffected. In ACCLAIM, a total of 2,048
patients with CHF in New York Heart Association
(NYHA) class II-IV and a left ventricular ejection
fraction (LVEF) of ≤30 were enrolled [30]. Patients
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in NYHA II had to have been hospitalized for heart
failure or received intravenous drug therapy for
heart failure within the previous 12 months. There
was no difference in the time to death or first
cardiovascular hospitalization (the primary endpoint)
for the intent-to-treat study population (p=0.22).
However, there was a significant reduction in the
risk of death or first cardiovascular hospitalization
by 39% (n=689 patients, 216 events, p=0.0003) in
patients in NYHA class II.

Mechanisms of statin actions

The development of statins started in 1971, when
the Japanese biochemist Akira Endo and his
colleagues started to screen microbial strains for
their ability to block cholesterol biosynthesis [31].
This finally yielded a success in 1973, when they
isolated the first HMG-CoA reductase inhibitor that
was later termed mevastatin (Figure 1) [31]. Due to
its toxicity, it never reached the market [32]. In 1980,
a mevastatin analogue was isolated, which was
subsequently marketed as lovastatin (Figure 1) [33].
It was the first statin to be approved by the US Food
and Drug Administration in 1987. A number of
different statins have been developed in the
meantime (Figure 1). These are being subdevided
according to their chemical structure (open-ring vs.

closed-ring structure), their origin (natural vs.
synthetic), and their solubility (hydrophilic vs.
lipophilic). In general, statins are well tolerated,
although rhabdomyolysis has been observed as 
a rare side effect [34].

Statin application leads to two physiological
responses. The first in an increase in the amount of
the rate-limiting enzyme in cholesterol biosynthesis,
HMG-CoA reductase (Figure 2). This step facilitates
the conversion of HMG-CoA to mevalonate. By
increasing the amount of HMG-CoA reductase, the
cell compensates for the statin-mediated inhibition
of the enzyme. Therefore, the direct reduction in
circulating cholesterol remains small. The other
response to HMG-CoA reductase inhibition is an 
up-regulation in the number of receptors for low
density lipoprotein (LDL) on hepatocytes [35]. These
receptors scavange circulating LDL from the plasma.

Pleiotropic effects of statins

LDL cholesterol reduction consistently reduces
cardiovascular risk [36, 37]. Interestingly, a reduction
in recurrent coronary events had been observed as
early as 16 weeks after the initiation of statin
therapy [38], and this timeframe is by far too short
to be ascribed to the positive effects of LDL
cholesterol reduction alone [39]. Additionally, 

FFiigguurree  11..  Chemical structures of the statins that are currently available in North America and most European countries
with the date of first approval by the US Food and Drug Administration. One additional statin, pitavastatin (not depicted),
is approved in Japan only
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a number of studies have reported that statins can
ameliorate morbidity and mortality in coronary
artery disease irrespective of serum cholesterol
levels. These findings gave rise to the idea of
pleiotropic statin actions. However, it is not entirely
clear how these pleiotropic effects are being
conferred. One possible explanation is a decrease
in the production of important intermediates from
the so-called mevalonate pathway that supplies
other intracellular pathways with their substrates.

One such by-product is farnesyl pyrophosphate, 
a precursor of not only cholesterol, but also of 
heme A, dolichols, and ubichinones. Another
important by-product from the mevalonate pathway
is geranylgeranyl pyrophosphate, which is derived
from farnesyl pyrophosphate (Figure 2). Both these
substrates are important for the activation of
various intracellular G proteins, because they anchor
these enzymes in the cell membrane. Therefore,
statins inhibit not only cholesterol synthesis but
also a number of other intracellular pathways,
including the activation of the small GTPase Rho.
Proteins of the Rho family (e.g. Rho, Rac1, Cdc42)
are involved in the regulation of cell morphology,
cell adhesion, cell motility, cell growth, and in cancer
cell metastasis [40]. 

Using inhibitors of Rho kinase,  a downstream
effector of Rho, it has been shown that these drugs
confer several beneficial effects on endothelial
function. Indeed, fasudil (Figure 3), a Rho kinase
inhibitor approved in Japan and China for the
treatment of cerebral vasospasm after subarachnoid
hemorrhage, has been shown to decrease pulmonary
vascular resistance in patients with severe pulmonary
hypertension [41], to decrease forearm vascular
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FFiigguurree  22..  Pathway of cholesterol biosynthesis. Statins inhibit HMG-CoA reductase, the rate-limiting enzyme in the pathway.
By-products such as farnesyl pyrophosphate supply other intracellular pathway with their substrates. This applies for
the activation of the small GTPase Rho, which is being anchored in the cell membrane by geranylgeranyl pyrophosphate,
a downstream product of farnesyl pyrophosphate
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resistance in patients with arterial hypertension [42]
or CHF [43], to improve neurological functions and
clinical outcome in patients with ischemic stroke [44],
and to prolong maximal exercise time and the time
to the onset of 1 mm ST-segment depression in
patients with stable effort angina [45].

Thus, the beneficial effects on endothelial
function that have been reported with statin
application may, at least in part, be mediated by
the inhibition of Rho [46]. Indeed, statins have been
found to induce endothelial nitric oxide synthase
(eNOS) [47], an enzyme that synthesizes the
vasodilating substance nitric oxide. The attenuation
of nitric oxide production is one of the most
important features of endothelial dysfunction [48].
Additionally, statin treatment yields an increase in
nitric oxide release by indirect mechanisms [49].
Another contributor to the development of
endothelial dysfunction is xanthine oxidase.
Overactivity of the enzyme is a frequent finding in
patients with CHF [50]. This enzyme catalyzes the
breakdown of uric acid, which also yields the
production of oxygen free radials [51]. Interestingly,
statins have been proposed to reduce oxidative
stress [52], and atorvastatin has been shown to
reduce vascular production of reactive oxygen
species in spontaneously hypertensive rats [52].

The Rho kinase inhibitor fasudil was also found to
decrease the production of TNF-α in an animal model
of colitis [53]. Thus, inhibition of Rho may also
contribute to the beneficial effects of statins
demonstrated in various diseases. Fluvastatin decreases
the expression of the monocytic receptor for bacterial
lipopolysaccharide, Toll-like receptor 4 [54]. Lovastatin
was shown to inhibit the production of TNF-α, IL-1,
and IL-6 in certain rat cell lines [55]. Some studies
have shown that this may also have clinical
implications. Pravastatin, for example, at a dose of 
40 mg daily reduced the plasma levels of TNF-α in
patients with hypercholesterolemia (n=40) after eight
weeks of treatment (p=0.32 vs. placebo) [56].
However, taking several studies together, it needs to
be admitted that the clinical results with statins are
somewhat mixed, although several lines of evidence
have shown a down-regulation of C-reactive protein
(CRP) levels with statin use. The PRINCE study
(Pravastatin Inflammation/CRP Evaluation) showed
significant reductions in serum levels of CRP in 1,182
patients with a history of myocardial infarction,
stroke, or arterial revascularization procedure. In
PRINCE, pravastatin was used at a dose of 40 mg
once daily, and CRP levels were reduced by 13%
after 24 weeks compared to baseline (p<0.005) [57].
In another study, atorvastatin was more effective
than pravastatin in achieving this effect, which was
shown among 3,745 patients with acute coronary
syndromes who participated in the PROVE IT-TIMI
22 study (Pravastatin or Atorvastatin Evaluation and

Infection Therapy-Thrombolysis in Myocardial
Infarction 22) [58]. For the purpose of this study,
atorvastatin was administered at a dose of 80 mg
once daily, pravastatin at 40 mg once daily.

Rho-independent pleiotropic effects of statins
are less well understood. Also, it is not clear whether
all statins share the same pleiotropic effects [59].
Some members of the statin familiy of drugs have
been found to mobilize bone marrow-derived
endothelial progenitor cells. Such cells have recently
been demonstrated to be able to trans-differentiate
into beating cardiomyocytes when they are 
co-cultured with neonatal rat cardiomyocytes or
when they are injected into the post-ischemic adult
mouse heart [60]. In addition, atorvastatin increased
the survival of mice (n=75) during a four-week
follow-up period after extensive myocardial infarction
(atorvastatin 80%, placebo 46%, p<0.01) [61]. One
prospective trial has been reported that recruited
15 patients with angiographically documented
stable coronary artery disease. Treatment with
atorvastatin 40 mg once daily for 4 weeks led to 
a significant increase in the number of endothelial
progenitor cells in the bloodstream of these
patients [62].

Clinical studies in patients 
with chronic heart failure

A number of different studies have been
published regarding the use of statins in patients
with CHF. Their results are quite mixed. Node et al.
performed a randomized, open-label study in
patients with symptomatic non-ischemic dilated
cardiomyopathy and an LVEF <40%. Patients
received either simvastatin (5 mg, increased to 
10 mg once daily after 4 weeks, n=23) or placebo for 
14 weeks [63]. Simvastatin treatment yielded
significant improvements in NYHA class (p<0.01) and
LVEF (p<0.05) compared to placebo. Moreover, there
were significant decreases noted in the plasma levels
of BNP, TNF-α, and IL-6 with simvastatin treatment.
Flow-mediated brachial artery vasodilation improved
only in the simvastatin group (p<0.01). Sola et al.
studied 108 patients with non-ischemic CHF and an
LVEF ≤35% who were treated with atorvastatin 
20 mg once daily (n=54) or placebo (n=54) in 
a double-blind, randomized study for 12±2 months
[64]. LVEF increased from 33±0.5 to 37±0.5%
(p=0.01) only in the atorvastatin group, whereas it
decreased in the placebo group (p=0.04). By the
end of the study, mean LVEF was significantly higher
in the atorvastatin group than in the placebo group
(p=0.004). Moreover, atorvastatin treatment led to
decreases in the plasma levels of IL-6, soluble 
TNFR-2, and CRP (all p<0.01 vs. baseline).

Yamada et al. studied 38 patients with mild to
moderate CHF of ischemic or non-ischemic origin
and an LVEF <40% [65].The study was originally
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performed in a double-blind fashion, and the
patients received either atorvastatin 10 mg once
daily or matching placebo. After 6 months, the study
was continued in an unblinded fashion due to
safety concerns. Patients were followed-up for at
least 3 years. By study termination, atorvastatin
treatment had yielded significant decreases in both
natriuretic peptides ANP (p=0.04) and BNP (p=0.02)
compared to baseline. At this time, BNP levels were
significantly lower than in the placebo group (p=0.01).
No changes were noted in the plasma levels of IL-6
or CRP, however, LVEF improved significantly in the
atorvastatin group both at 6 months and 3 years of
follow-up (both p<0.025 vs. baseline). Additionally,
there was a significant improvement in peak VO2
from 20.6±5.1 to 23.2±5.7 ml/kg/min (p<0.025) [65].
However, a small study in 15 patients with non-
ischemic cardiomyopathy produced neutral results
after 12 weeks of treatment with atorvastatin 80 mg
once daily or placebo [66]. These authors failed to
demonstrate any changes in NT-proBNP, CRP,
soluble TNFR-1, TNF-α, and a number of adhesion
markers in the atorvastatin group.

Gürgün et al. performed an open-label study in
20 patients with ischemic and another 20 patients
with non-ischemic cardiomyopathy and an LVEF
<40% [67]. All subjects were treated with fluvastatin
80 mg once daily for 12 weeks. Mean NYHA class
improved in both groups (both p<0.01 vs. baseline)
as did LVEF (both p=0.001). No changes were noted
in BNP or IL-6, neither in the ischemic nor in the non-
ischemic group. However, there was a significant
decrease in the plasma levels of TNF-α with
fluvastatin in the ischemic group (p=0.01 vs.
baseline) [67].

The UNIVERSE (Rosuvastatin Impact on Ventricular
Remodeling, Lipids and Cytokines) trial was a rando-
mized, placebo-controlled, double-blind study of 
6 months duration [68]. The original aim of enrolling
126 patients was curtailed when recruitment became
too slow due to a lack of statin-naive patients. Thus,
only 86 patients with CHF of ischemic or non-ischemic
origin were randomized to rosuvastatin at an
increasing dose (target: 40 mg once daily) or placebo.
88% of the patients in this study had non-ischemic
cardiomyopathy. Unfortunately, the study failed to
reach its primary and all of its secondary endpoints.
Indeed, there were no changes in LVEF, plasma values
of norepinephrine, endothelin-1, BNP, CRP, TNF-α, or
IL-6 [68].

Currently, only one large-scale trial of a statin in
CHF is available. The CORONA study (Controlled
Rosuvastatin Multinational Trial in Heart Failure)
study enrolled a total of 5,011 patients with
ischemic CHF and an impaired left ventricular
ejection fraction (LVEF) who were randomized to
placebo or rosuvastatin 10 mg once daily in 
a double-blind fashion [69]. The median follow-up

was 32.8 months. The primary end-point was
defined as a composite of death from cardiovascular
causes, non-fatal myocardial infarction, or non-fatal
stroke. At study termination, a primary end-point
had been observed in 692 patients in the
rosuvastatin and in 732 patients in the placebo
group (hazard ratio 0.92, 95% confidence interval
0.83-1.02, p=0.12). There were no significant
differences between the two groups in terms of the
primary outcome. In CORONA, only one beneficial
effect was noted with rosuvastatin treatment. 
This was a reduction in the total number of
hospitalizations for worsening heart failure (p=0.01)
[69]. The median level of CRP decreased from 3.1
mg/l at baseline to 2.1 mg/l (-31.6%) at the last visit
in the rosuvastatin group and increased slightly in
the placebo group (+5.5%, p<0.001) [69]. However,
since there was no improvement in survival with
rosuvastatin treatment, one may also question the
value of CRP reduction.

With GISSI-HF (Gruppo Italiano per lo Studio della
Sopravvivenza nell’Insufficienza Cardiaca), a similar
study is still ongoing. This prospective, multicenter,
randomized, double blind trial aims to investigate
the impact of n-3 polyunsaturated fatty acids (PUFA)
and rosuvastatin in patients with CHF. Patients are
randomized in 2 steps to (i) n-3 PUFA (1 g once daily)
or placebo and (ii) rosuvastatin (10 mg once daily) or
placebo. The previously performed GISSI-Prevenzione
trial showed that 3-year treatment with low-dose
n-3 PUFA was associated with a significant
reduction of total mortality by 21% in patients who
survived a recent myocardial infarction [70].

In conclusion, statins possess a number of
properties that may improve the clinical symptoms
of patients with CHF. However, when addressing the
use of statins in these patients it is necessary to
consider the cholesterol paradox. In general, LDL is
reduced by another 7% with each doubling of the
dose of a statin [71]. It is not known which doses
are needed to achieve pleiotropic effects. In fact,
these doses might be a lot lower than those needed
to achieve LDL reductions. Although several
retrospective analyses have shown beneficial effects
of statins in patients with CHF [72, 73], it is also
known that higher cholesterol values are associated
with better (not worse) survival of these patients
[74-76]. Thus, it appears that cholesterol exerts 
a protective effect in patients with CHF [77]. From
patients with sepsis, it is known that cholesterol
can inactivate bacterial lipopolysaccharide, a cell
wall component from gram-negative bacteria, by
micell formation around them. Since the gut wall
is disturbed in patients with CHF [78] and elevated
levels of lipopolysaccharide have been found during
edematous decompensation [79], it is likely that
cholesterol also inactivates lipopolysaccharide in
patients with CHF. This, in turn, would lead to 
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a decrease in the release of pro-inflammatory
cytokines, because lipopolysaccharide is a major
inducer of these substances. These facts have been
put together in the so-called endotoxin-lipoprotein
hypothesis [80]. Keeping this hypothesis in mind, it
would appear that statins should be administered at
a dose that does not lower cholesterol but does exert
pleiotropic effects. The dose of rosuvastatin used in
CORONA did lower cholesterol values. Thus, the dose
of rosuvastatin may have been too high. Moreover,
it is unclear if all statins share the same pleiotropic
effects or if only single substances are capable to
exert these. If this is the case, rosuvastatin may have
been even the wrong drug. Future studies need to
address these questions in more detail.
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